- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Helhoski, Søren (2)
-
Allen, Natalie_H (1)
-
Black, William_K (1)
-
Brockland, Julia (1)
-
Chary, Ranga-Ram (1)
-
Clowe, Douglas (1)
-
Cooper, M_C (1)
-
Dell’Antonio, Ian (1)
-
Donahue, Megan (1)
-
Englert, Anthony (1)
-
Escalante, Zacharias (1)
-
Evrard, August (1)
-
Fu, Shenming (1)
-
LaDuca, Philip (1)
-
Lacy, Mark (1)
-
Larkin, Christelyn (1)
-
Lauer, Tod (1)
-
Liu, Binyang (1)
-
McCleary, Jacqueline (1)
-
Meneghetti, Massimo (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Local Volume Complete Cluster Survey is an ongoing program to observe nearly a hundred low-redshift X-ray-luminous galaxy clusters (redshifts 0.03 <z< 0.12 and X-ray luminosities in the 0.1–2.4 keV bandLX500c> 1044erg s−1) with the Dark Energy Camera, capturing data in theu,g,r,i,zbands with a 5σpoint source depth of approximately 25th–26th AB magnitudes. Here, we map the aperture masses in 58 galaxy cluster fields using weak gravitational lensing. These clusters span a variety of dynamical states, from nearly relaxed to merging systems, and approximately half of them have not been subject to detailed weak lensing analysis before. In each cluster field, we analyze the alignment between the 2D mass distribution described by the aperture mass map, the 2D red-sequence (RS) galaxy distribution, and the brightest cluster galaxy (BCG). We find that the orientations of the BCG and the RS distribution are strongly aligned throughout the interiors of the clusters: the median misalignment angle is 19° within 2 Mpc. We also observe the alignment between the orientations of the RS distribution and the overall cluster mass distribution (by a median difference of 32° within 1 Mpc), although this is constrained by galaxy shape noise and the limitations of our cluster sample size. These types of alignment suggest long-term dynamical evolution within the clusters over cosmic timescales.more » « less
-
Allen, Natalie_H; Nakajima, Miki; Wünnemann, Kai; Helhoski, Søren; Trail, Dustin (, Journal of Geophysical Research: Planets)Abstract The Vredefort impact structure, located in South Africa and formed 2.02 Ga, is the largest confirmed remnant impact crater on Earth. The widely accepted impactor diameter and velocity to form this crater are 15 km and 15 km/s, respectively, which produce a crater diameter of 172 km. This is much smaller than the most commonly cited estimates (250–280 km), and while previous results were able to match the geologic evidence known at that time, these impact parameters are not consistent with more recent geological constraints. Here, we conduct impact simulations to model the Vredefort crater formation with the shock physics code impact Simplified Arbitrary Lagrangian Eulerian (iSALE). Our numerical simulations show that combinations of the impactor diameter and impact velocity of 25 km and 15 km/s or 20 km and 25 km/s are able to recreate the larger crater size of ∼250 km. Moreover, these configurations can reproduce shock‐metamorphic features present in the impact structure today, including the distributions of breccia, shatter cones, planar deformation features in quartz and zircon, and melt. Our model also predicts that Vredefort and Karelia, Russia, where an ejecta layer from the impact was found, were approximately 2,000–2,500 km apart based on the layer thickness. Additionally, we use this model to predict the potential global effects of such a large impact by estimating the amount of climatically important gases released to the atmosphere at the time. Our work demonstrates the need to revisit previously estimated impactor parameters for large terrestrial craters in order to better characterize impact events on Earth and elsewhere.more » « less
An official website of the United States government
